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Abstract

In this report, we study Demand Response (DR) problematics for different levels of information
sharing in a smart grid. We propose a dynamic pricing scheme incentivizing consumers to achieve an
aggregate load profile suitable for utilities, and study how close they can get to an ideal flat profile
depending on how much information they share. When customers can share all their load profiles, we
provide a distributed algorithm, set up as a cooperative game between consumers, which significantly
reduces the total cost and peak-to-average ratio (PAR) of the system. In the absence of full information
sharing (for reasons of privacy), when users have only access to the instantaneous total load on the grid,
we provide distributed stochastic strategies that successfully exploit this information to improve the
overall load profile. Simulation results confirm that these solutions efficiently benefit from information
sharing within the grid and reduce both the total cost and PAR.
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A Additional plots 12

1 Introduction

The current U.S. electrical grid is built up according to a static, centralized structure: remote power plants
transmit electrical power through long-distance high-voltage lines to substations (transmission network),
which in turn adapt and deliver it to local end users (distribution network). In this model, the local network
is often statically tuned to match a given average load profile from its consumers.

Yet this structure is about to undergo a major shift: the progressive integration of smart meters [1] and
communicating appliances will upgrade this “blind” system to a decentralized “smart grid” [2], which is
foreseen as a way to save billions dollars in energy consumption [3].

In a smart grid infrastructure, utilities can set up dynamic tariffs incentivizing customers to adjust their
loads to the current state of the network. This key feature, known as demand side management, will yield
several benefits, including:

• Integration of intermittent energy sources such as wind or solar power at the distribution level [4];

• Demand Response: customers will be encouraged to shift their heavy loads to off-peak hours;

• Resilience to attacks or power outages, with users spurred to turn off their “non-critical” devices in
case of heavy load on the grid or upstream outages [5]; and

• Energy savings: studies [6] already suggest that giving customers access to real-time consumption
information yields significant savings.

Such load management is becoming even more crucial as plug-in hybrid electric vehicles (PHEVs) are
coming to the market. With battery capacities varying from 15 to 50 kWh, these vehicles are expected to
double the average household load during charging time [4].

Therefore, the design of appropriate incentives and efficient energy consumption scheduling (ECS) algo-
rithms is a main issue for the deployment of the upcoming smart grid.

In [7], the authors deal with ECS in the case of increasing strictly convex cost functions. They propose
a distributed algorithm and show through a game-theoretic analysis that, for incentives satisfying certain
properties, it yields optimal energy consumptions for end users. However, they implicitly assume that the
daily load on the network is proportional to the daily cost for the utility, with a constant independent of
load scheduling (i.e., of game dynamics): this is a strong hypothesis which implies utilities’ costs are linearly
bounded in any situation.

In this report, we survey different scheduling problems depending on the DR architecture (centralized or
distributed) and the degree of knowledge appliances have on the state of the network. As in [7], we embed
consumers in a local distribution network consisting of a single energy source (e.g., a step-down substation)
supplying several load subscribers.

The rest of this report is organized as follows. We introduce our pricing scheme and notations in section
2. In section 3, we see that the general scheduling problem is NP-hard, and provide a distributed solution
set-up as a cooperative game between consumers. We provide stochastic policies for a decentralized setting
in section 4. In section 5, we derive the best distributed policy for synchronized users in a power grid, which
we use as a reference in section 6 where we provide experimental results. We draw conclusions in section
7 and suggest future work in section 8, including considerations of interruptible and non-uniform demand
profiles.

2 Problem set-up

We consider a T -hour time period, e.g., T = 6 hours from midnight to 6AM, during which N customers
need to automatically schedule their electrical jobs. Note that our time horizon is finite since users do not
want their jobs to be delayed forever.
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2.1 Loads and Costs

The nth customer has demand profile Dn parametrized by flexible start time sn and fixed (dn, τn) parameters,
where dn denote the instantaneous power consumption of the job and τn its duration:

Dn(t) = dn1{sn≤t≤sn+τn}

where 0 ≤ sn ≤ T − τn. We assume that once the service start time sn is selected, it cannot be interrupted
by the user. The total instantaneous load on the network is then

λ(t) :=
∑

n

Dn(t) =
∑

n

dn1{sn≤t≤sn+τn}

We denote by C(λ(t)) the cost, in $/kW, experienced by the utility at time t (for the costs charged to
consumers, see equation (4)). It depends on the instantaneous load λ(t), and the function C itself is likely
to depend on additional system parameters. For example, the two-step conservation rate model used by BC
Hydro [8] (parametrized by load threshold L) is

CL(λ(t)) = C0 · 1{λ(t)<L} + C1 · 1{λ(t)≥L}.

In a more general setting, C can be any smooth convex function of λ(t). However, in this article, we will
focus on a ramp cost function with load threshold L > 0:

CL(λ(t)) = C0 + C ′(λ(t)− L)+ (1)

where the base cost C0 and the overage rate C ′ are positive constants (x+ denotes max(0, x)). Threshold L
corresponds to the load upon which the utility experiences overages, and therefore raises the cost to dissuade
customers from scheduling their jobs. Otherwise, λ < L corresponds to the plant’s nominal operational
regime.

Finally, we will call “Global Cost” the overall cost (in $) for the utility:

GC :=
∫ T

t=0

∑
n

Dn(t)CL(t)dt =
∫ T

t=0

λ(t)CL(λ(t))dt

With a ramp pricing scheme, this global cost becomes:

GCramp = GC0 + C ′
∫ T

0

λ(t)(λ(t)− L)+dt. (2)

where GC0 := C0

∑
n dnτn is a schedule-independent incompressible cost.

2.2 Non-triviality Criterion

We are interested in scenarios where there is too much demand for the system to avoid overages, and so it
has to cope with such situations. A simple way to insure this is for jobs to meet the following criterion:∑

n

dnτn > LT. (3)

3 Complete Knowledge Setting

In this section, we survey scheduling when all the jobs’ characteristics (dn, τn) are known, either to all
players or to a single entity who tries to find an optimal schedule for the whole system. This is for example
the purpose of the global controller in [9]. Web portals like Google PowerMeter [10], OPOWER [11] or
CustomerIQ [12] also centralize energy consumption data about their users, which they can use thereafter
to derive a better schedule and advise consumers to conform to it.

We will first remind that finding an optimal schedule is an NP-hard problem and discuss a greedy
approach for it. We will then consider a distributed algorithm set-up as a game between consumers, and
derive an optimal strategy for it.
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3.1 NP-hardness

Lemma 1. When load profiles (dn, τn) are different for different users, the problem of minimizing GCramp

over all start times {sn}Nn=1 is NP-hard.

Proof. Suppose we know how to solve our problem in polynomial time. Then, using expression (2), we can
decide wether it is possible or not to schedule all the jobs with no overage: suffices to check wether it is equal
to C0

∑
n dnτn or not.

As we know how to do it for any time horizon T , we can derive by dichotomy the minimal time Tmin

for which one can fit all jobs while never exceeding threshold L. Hence, our algorithm would make possible
polynomial computation of the makespan of any instance of Resource Constrained Scheduling, which
is know [13] as NP-complete. Therefore, minimizing (2) is an NP-hard problem.

Even when all durations τn are equal (or similarly all dn are equal), finding an optimal schedule is still
an NP-hard problem (i.e., the Bin packing problem).

3.2 Discussion : Greedy approach

Since the overall problem is NP-hard, one can consider approximating its optimal solutions, e.g., using well-
known metaheuristics such as simulated annealing. Though we won’t investigate how these techniques would
perform, we will give an incremental greedy solution that may get trapped in suboptimal local extrema.

We consider inserting jobs in a given order i1, . . . , iN and denote by λk the load profile after jobs i1, . . . , ik
have been scheduled (with λ0 ≡ 0). Given λk, we want to schedule the (k + 1)th job so as to minimize the
global cost incurred by λk+1. Let Ik+1(s) := [s; s + τk+1] ∩ {t|λk(t) > L − dk+1}, λ+

k = (λk − L)+ and
λ−k = (L− λk)+. Then, one can show that minimal GCramp for λk+1 is achieved when sk+1 minimizes:∫

Ik+1(sk+1)

[
(d− λ−k (t))2 + 2dλ+

k (t) + L(d− λ−k (t))
]
dt

3.3 Distributed Action

Now we assume consumers have complete knowledge of each others demands and play a game where they
seek to minimize the global cost GCramp. We provide an effective strategy for players, derived in a pessimistic
setting, which turns out to be efficient at peak shaving and yields very good results in practice (see section
6).

Here “complete” knowledge means players will either communicate their demand profiles or make infer-
ences about others demands based on repeated observations (e.g., night after night of [0, T ] = [12 AM–6
AM] activity).

To incent customers to minimize GCramp (which correspond to the actual cost of supplying their demand,
or an upper bound of it), utilities may charge customer i with an amount bi proportional to both the energy
he consumed and the global cost, e.g.,

bi :=
diτi∑
j djτj

× GCramp = C0diτi ×
GCramp

GC0
, (4)

where C0diτi is the minimal possible cost for scheduling player i’s job.
In what follows, we denote by Fi the Cumulative Distribution Function (CDF) of the start time of player

i, Fi(t) := P[si ≤ t], and fi the density of dFi. We also define φi(t) := Fi(t) − Fi(t − τi) which is the
probability of job i being active at time t.

Considering equation (2), we can upper bound GCramp as follows:

GCramp ≤ GC0 +
∫ T

0

λ(t)2dt =: GC+
ramp.
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Let us consider a game where users seek to minimize the expected value of GC+
ramp, which is the same as

minimizing E[
∫

λ2]. Since
∫

λ2 =
∫

(λ− µ)2 plus a constant, where µ denotes the temporal mean of λ, this
goal is closely related to peak shaving.

For any user i, let us define:

Hi(t) :=
∑
j 6=i

dj (φj(t)− φj(t + τi)) ,

which does not depend on Fi. We have:

E

[∫ T

0

λ(t)2dt

]
=

∑
i,j

didj

∫ T

0

φi(t)φj(t)dt

=
∑

i

di

∫ T

0

Fi(t)Hi(t)dt =:
∑

i

γi.

The game between customers goes like this: users play asynchronously, and at his/her turn, player i updates
Fi in order to minimize γi ∝

∫
FiHi.

Claim 1. The optimal CDF F ∗
i minimizing

∫
FiHi for any given (right-continuous) function Hi is an

indicator F ∗
i (t) = 1{t≥si} for some si ∈ [0, T − τi].

To show this property, let us remark a few facts.

Lemma 2. For any CDF Fi, there exist a staircase CDF F̂i such that
∫

F̂iHi ≤
∫

FiHi.

Proof. Since Hi is right continuous, one can take a subdivision 0 = r0 < r1 < . . . < rn = T of [0, T ] such that
Hi is of constant sign on subintervals Ik := [rk, rk+1[, but changes sign between consecutive subintervals.
Now define F̂i on Ik as maxIk

Fi if Hi is negative on Ik, and minIk
Fi otherwise (see Figure 1). This definition

yields a new CDF such that F̂i(t)Hi(t) ≤ Fi(t)Hi(t) for all t ∈ [0, T ].

Figure 1: Staircase CDF optimization.

Lemma 3. For any staircase CDF Fi, there exists a “one step” CDF F ∗
i such that

∫
F ∗

i Hi ≤
∫

FiHi.

Proof. From the previous lemma, we can suppose without loss of generality that Fi is a staircase CDF, so
that Fi(t) =

∑
k pk1{t≥rk} where

∑
k pk = 1. Thus,

∫
FiHi =

∑
k pkAk with Ak :=

∫ T

rk
Hi(t)dt. This is

just a convex combination of real constants: if we denote by m the index of the minimum Ak, si := rm and
F ∗

i (t) = 1{t≥si}, then
∫

F ∗
i Hi = Am ≤

∑
k pkAk ≤

∫
FiHi.
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Hence, given Hi, there is an optimum F ∗
i which is an indicator F ∗

i (t) := 1{t≥si}, where we know how to
compute si from Hi. Furthermore, ∫

F ∗
i Hi =

∫ si+τi

si

∑
j 6=i

djφj(t)dt,

which means the best move for player i is to schedule his job deterministically at a time minimizing the
(weighted) sum of the probabilities of other jobs being active during his span [si, si + τi].

This game seeks to minimize
∑

i γi by optimizing each γi iteratively. It does not necessarily lead to the
optimal solution since re-scheduling job i may increase any γj for j 6= i, yet we will see in section 6 that it
achieves its goal pretty well in practice.

4 Partial Knowledge Setting

In this section, we suppose players do not share information about each others demands (for privacy rea-
sons), but can still make inferences through the instantaneous total load λ(t) which is assumed actively
communicated by the network.1

We consider an iterative decision process where, at time t, user i decides (stochastically) whether to
schedule his job or not according to:

• his own parameters (di, τi),

• the past load profile {λ(t′), t′ < t}.

Concerning the load profile, we will focus on protocols where the decision at time t only depends on the last
know value of the load λ(t−).

In what follows, we suppose that all jobs’ durations τn are integer multiples of a unit time slot duration
τ0 dividing T , so that we can without loss of generality schedule jobs at times multiples of τ0.

4.1 ALOHA Strategy

The first strategy we propose is inspired by the slotted ALOHA protocol [15]. At each time step, if his
job has not been scheduled yet, player i applies the following decision procedure, which is parametrized by
0 < qi < pi < 1:

Algorithm 4.1 ALOHA decision procedure for player i

if t = T − τi (last possible scheduling slot) then
si ← t

else if λ(t−) + di ≤ L then
si ← t with probability pi

else
si ← t with probability qi

end if

Parameters pi should be low enough to avoid customers synchronization, but high enough to allow most
of the jobs to induce no overage (keep λ < L).

When L is far below the mean load 1
T

∫
λ and all qi = 0, the policy may keep too many jobs for the end,

resulting in peak loads at times close to T . Suitable values qi > 0 help deal with this unwanted behavior.
1We hence suppose that the utility is able to measure the effective state of the grid and compute its load, which is not a

minor hypothesis since recent work [14] highlighted flaws in the state estimation techniques currently in use.
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4.2 Decision Density

A way to generalize this approach is to set up a scheduling decision function for player i, gi(t) := g(λ(t), t, di, τi) ∈
[0, 1], where we assume the form of g is the same for all players. Player i will therefore start at time t with
probability gi(t), decisions being independently made by all players.

For example, under this formulation, the decision density for the ALOHA strategy is

g(λ, t, d, τ) := mux(t = T − τ, 1,mux(λ + d ≤ L, pi, qi)),

where mux is the multiplexer function (mux(c, a1, a2) := a1 is c is true, and a2 otherwise). Reasonable
assumptions about g include:

• g increases with t;

• g → 1 when t→ T − τi;

• g < 1 when λ� L and t� T ; and

• g decreases with λ when λ > L.

With this in mind, we devised a new stochastic strategy improving the ALOHA one.

4.3 Time/Slackness Strategy

One of the issue of the ALOHA strategy lies in the way it discriminates jobs, since it focuses on the
instantaneous load di and only takes τi into account as t → T − τi. To remediate this shortcoming, we
instead use the slackness σ defined when λ < L and t < T − τ as:

σ(λ, t, d, τ) :=
dτ

(L− λ)(T − τ − t)
,

i.e., the ratio of the job’s overall energy consumption dτ and the residual energy (L − λ)(T − τ − t) which
corresponds to the energy available with no overage under the assumption that λ stays constant.

Now define g1(t) :=
(

t
T−τ

)α

. We propose to use the simple density:

g(t, σ) = g1(t) + (1− g1(t))(β + γ · 1{0<σ<1}), (5)

so that just three parameters α, β and γ are in play. We call the associated policy Time/Slackness, since it
consists of a Bernoulli trial over g1(t) (ensuring the task is scheduled in time), followed by another trial
based on slackness, giving a boost to the tasks for which there is enough residual energy.

Experimental results (see section 6) confirm this new strategy yields better results than the ALOHA one,
suggesting energy is a better discrimination criterion than power.

5 Blind Setting

In this section, we survey a power-grid setting where there is no communication layer between users. We
also assume all customers have the same demand profile (d, τ) and decide to schedule their jobs at times
multiples of τ (where T = Kτ , K ∈ N) in a discrete time setting. We show that, in this simplified setting,
the best strategy for customers is to choose their time slot uniformly at random.

Note that, here, broadcasting λ(kτ−) to the users would be useless since this value is independent from
λ(kτ).

Claim 2. The expected overall cost E[GC] is minimized when (independent) start times are chosen uniformly
distributed on {kτ, k ∈ J0,K − 1K}.
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Proof. Let pk be the Probability Mass Function (PMF) of start-time s, common to all customers by sym-
metry. Limited information implies independent scheduling decisions. Therefore, the number of customers
that select a given service epoch is binomially distributed, i.e.,

P[λ(kτ) = nd] =
(

N

n

)
pn

k (1− pk)N−n.

So, the overall expected cost
N∑

n=1

K−1∑
k=0

τndCL(nd)
(

N

n

)
pn

k (1− pk)N−n =:
K∑

k=1

G(pk)

is to be minimized subject to the PMF p in the K-dimensional simplex
∑K−1

k=0 pk = 1. Note that G, defined
by swapping order of summation, does not depend on the time-index k. The Lagrangian for this problem is

K−1∑
k=0

G(pk) + c

(
1−

K−1∑
k=0

pk

)
,

with Lagrange multipier c, leading to the first-order necessary conditions whose solution is

∀k ∈ J0,K − 1K, pk = (G′)−1(c),

i.e., pk is constant in k. (One can check that G′ is indeed bijective.) Condition
∑K

k=1 pk = 1 therefore yields
pk = 1/K, so p is the PMF of a uniform distribution.

6 Numerical Experiments

Experiments on DR scenarios can involve embedding users in one of the IEEE test systems used in [14]
(which can be found in MATPOWER, a MATLAB package) with a shared-resources game between them,
taking into account on the characteristics of the buses. For our experiments we chose the simpler model,
used in [7], of a local distribution network with one energy source and several load subscribers.

We implemented a simulator in Python working on a six hours time frame divided into a customizable
number of time slots. It implements the different policies we encountered:

• Uniform: the best solution in the blind setting;

• ALOHA I: the ALOHA strategy where all users share the same probabilities pi = p and qi = 0;

• ALOHA II: same strategy with ∀i, pi = p > qi = q > 0;

• Time/Slackness: the policy from section 4 with decision density (5) parametrized by α, β and γ;

• Game: the game from section 3.

Our simulator is open-source and available online at [16].
We set-up different test settings and ensured criterion (3) was met in each of them. For the Game policy,

optimal behavior was reached for an average of 3 moves per player, which suggests this strategy converges
quickly.

For the ALOHA and Time/Slackness policies, we manually chose good values of the parameters for each
setting. In fact, all settings turned out to share approximately the same efficient values of the parameters,
i.e.,

• ALOHA I : p ≈ 0.2

• ALOHA II : p ≈ 0.145 and q ≈ 0.0175

• Time/Slackness: α ≈ 45, β ≈ 0.006 and γ ≈ 0.12. This value of α implies time considerations are
neglected while t < 90% T . In the last decile however, g1(t) yields more balanced schedules than a
simple time-over check.
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6.1 Residential Setting

The first scenario we considered is the case where all jobs have the same duration τ and instantaneous cost
d, i.e., a residential area where houses have the same first-order load profile. For 1,000 users with a demand
profile of 20 kW for 1 hour, the system’s nominal load was set to L = 3, 000 kW, while we chose C0 =
2.8×10−6 $/kW/s (which is the first step in the model used at BC Hydro [8]) and C1 = 2.8×10−8 $/kW2/s.

We focused on the global cost GCramp experienced by the utility for each policy. Results averaged over
several runs are shown in Figure 2 with confidence bars.
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g
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  Game

  Uniform

  Time/Slackness

  ALOHA-like II

  ALOHA-like I

residential.in (1000 users)

Figure 2: Average global costs in the residential setting.

The best load profile for this configuration is a flat one. The Game strategy achieves a nearly optimal
result, which comes from the fact that it is the only policy with enough information to actively seek a flat
profile. Stochastic heuristics just try to approximate it (again with only limited information) while the
uniform one tends to underload the borders (times close to 0 and T ). We also see that, in this setting where
all customers are identical, the uniform policy yields better schedules than the heuristics from section 4.

6.2 Heterogeneous Setting

We also investigated the case where a lot of different profiles coexist on the network, including:

• a few “big” users demanding 100–400 kW for 2-5 hours,

• about 100 users demanding 10–50 kW for 1-3 hours,

• about 100 users demanding 10 kW for about 1 hour,

• a few “peak” users demanding > 800 kW for < 30 min.

System-wide parameters were set to L = 1000 kW, C0 = 2.8× 10−6 $/kW/s and C1 = 2.8× 10−7 $/kW2/s.
Results are show in Figure 3.

Again, the Game policy achieves the best behavior, but this time our heuristics perform better than the
uniform strategy. Sample load profiles (some of which can be found in appendix A) indicate that:
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Figure 3: Average global costs in the heterogeneous setting.

• the Uniform strategy tends to make expensive mistakes, scheduling “big” players when the grid is
already stressed and unloading the borders;

• ALOHA I achieves a rather flat load, but is likely to keep big players for the end, yielding a final peak;

• ALOHA II partially avoids this behaviour when q is high enough, but does not discriminate players in
case of overage;

• Time/Slackness is the best of the three heuristics and achieves a good compromise in scheduling both
small and big users at each time step.

6.3 Peak-to-average ratio

We mentioned that the Game strategy is effective at peak shaving. We may illustrate this with figures,
comparing its peak-to-average ratio (PAR) with the one of the Uniform strategy, averaged over several runs.

Game Uniform Improvement
Domestic 1.02 1.29 20.9%

Heterogeneous 1.38 2.28 39.5%

Table 1: PAR benefits of the Game policy.

7 Conclusions

In this report, we studied Demand Response problematics on multiple architectures for the dynamic pricing
scheme (1). We saw that the general problem of finding an optimal schedule under this cost is NP-hard. We
then surveyed different strategies depending on the degree of information sharing in the network.
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When all demand information is shared, we proposed a game played by customers yielding good results
in practice. When only the instantaneous load is known, we provided distributed strategies using the
instantaneous load to reduce their costs. To experimentally evaluate all these policies, we developed our own
open-source simulator which we released at [16]. Simulation results confirm that all these strategies perform
better than when consumers do not communicate, especially the distributed game which significantly reduces
the global cost and PAR, given the required information is available.

8 Future Work

In our jobs model, we chose a first-order approximation of the aggregate profile. Further study could take
into account several devices per user with interruptible, non-constant load profiles and power consumptions
ranging from 0.01 kW (light bulb) to 1 kW (dishwasher, cloths dryer). Furthermore, multiple hierarchy
levels can be considered: devices, users, substations (trying to optimize their own costs, providing incentives
to the customers).

Also, in cost (1) we took a threshold L constant within the timeframe of study, which does not encompass
the integration of renewable energy sources that may deliver additional power during short time intervals.
It would thus be interesting to survey how heuristics perform with a time-varying threshold L(t).

Finally, though the smart grid marketplace information flow is small in volume (and can therefore be
“strongly” authenticated with low cost), security problems such as false data injection attacks [14] arise,
which warrant additional consideration.
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Figure 4: Sample load profiles in the Domestic setting.
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Figure 5: Sample load profiles in the Heterogeneous setting.
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